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Abstract

A simple method for the determination of volatile selenium compounds employing a gas chromatograph equipped with a photoionization
detector is described. The method involves the direct injection of dimethylselenide (DMS) or dimethyldiselenide (DMDS) into the gas
chromatograph; no derivatization of the sample was required. The photoionization detector was capable of detecting 60 pg (0.55 pmol)
of DMS and 150 pg (0.80 pmol) DMDS. Sensitivity was 10–50 times greater with DMS and 4–20 times greater with DMDS when the
photoionization detector was employed than when the flame ionization detector was employed.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Selenium is a common environmental element whose
presence in soils and groundwaters may be due to either
natural or anthropogenic activities. In small amounts, inor-
ganic selenium is an essential element; however, in large
amounts, selenium toxicity can cause fatigue, irritability,
and damage to the nervous system[1]. Many plants and
microorganisms can transform inorganic selenium species
into volatile organic species. This biological activity is
important in the global cycling of selenium and is an im-
portant step in reducing the toxicity of inorganic selenium
in soils. Volatile organic species escape from the soil and
are far less toxic than are inorganic selenium species[2].
Dimethylselenide is the most common volatile organic
selenium species produced by microorganisms[3,4].

There have been a number of reviews on the analysis of
selenium and selenium-containing compounds and a number
of analytical procedures are available[5–10]. Atomic ab-
sorption spectrometry (AAS) is perhaps the most commonly
used method for total selenium analysis[10] with hydride
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generation AAS being the most sensitive of the AAS proce-
dures. For dimethylselenide (DMS) and dimethyldiselenide
(DMDS), detection limits of 5–25 pg have been reported[5].
For the AAS analysis of gaseous selenides, the vapors must
first be trapped and then oxidized to selenite for analysis.

Gas chromatography (GC) has been used to identify and
determine the amount of volatile organic selenium species
in samples. Flame ionization detection (FID) has been em-
ployed as a method for the detection of DMS and DMDS.
FID analysis is simple, requiring no sample derivatization
or other sample preparation, and is cost effective, in that
FID detectors are inexpensive. In addition, FID systems
are probably the most common detectors available on gas
chromatographs. However, FID is not as sensitive as many
alternative approaches. Also, flame ionization detectors,
because they detect hydrocarbons and because there are
so many different hydrocarbon compounds, have poor se-
lectivity. Electron-capture detection (ECD) has also been
employed to measure organoselenium compounds. This
approach offers good selectivity and detection limits in the
picogram range but requires that the selenium species be
derivatized to a form that can be detected by ECD[11–13].
Mass spectrometry and hydride generation AAS can be cou-
pled to GCs and used to detect DMS and DMDS[5]. Mass
spectrometry offers very high assurance of sample identity
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and detection limits that are in the picogram range for many
organoselenium compounds[13,14]though the cost of mass
spectrometry can be a problem for some laboratories.

Colorimetric approaches are also available but are tedious
and offer very low sample throughput. These approaches in-
volve trapping of the volatile selenium species and conver-
sion to selenite for colorimetric measurement[10]. With any
procedure involving the chemical alteration of the volatile
selenium species, be it derivatization for ECD measurement
or conversion to selenite for chemical or AAS measurement,
losses caused by incomplete transformation during the pro-
cess can be a problem.

The objective of this study was to evaluate the use of
photoionization detection (PID) as a simple procedure for the
direct measurement of DMS and DMDS and to compare this
procedure with the direct measurement of these compounds
with FID.

2. Experimental

2.1. Instrumentation

Gas chromatography was carried out using a Hewlett-
Packard 5790 instrument equipped with a Hewlett-Packard
FID system and with a HNU Systems (Newton, MA, USA)
model PI 52-02A photoionization detector. Liquid injections
were 1�l and headspace injections were 500�l in volume.
Injection was into a split–splitless injector operated in the
splitless mode. Port temperature was 235◦C. Peak separa-
tion was achieved on a GS-Q 30 m×0.540 mm column sup-
plied by J&W Scientific (Folsom, CA, USA). The carrier
gas was helium at 37 ml min−1. Oven temperature varied
from study to study. The FID system was operated at 235◦C
with hydrogen supplied at 30 ml min−1 and air supplied at
240 ml min−1. The PID system was operated with a 10.2 eV
bulb at 235◦C. Peak area was estimated using a Shimadzu
Class VP electronic integrator.

2.2. Materials

DMS and DMDS were obtained from Sigma–Aldrich
(Milwaukee, WI, USA). Stock solutions containing
1000 ng�l−1 were prepared by diluting 7.1�l of DMS or

Table 1
Figures of merit

Detector Compound Reproducibility with DMS or DMDS (R.S.D., %;n = 3) Calibration (y = kx + d)a

0.1 ng 1.0 ng 10 ng 100 ng 1000 ng k d r2

FID DMS NDb ND 20.1 5.9 1.7 530 282 0.9997
DMDS ND ND 19.4 3.7 3.0 364 2 0.9991

PID DMS 6.8 0.5 1.4 2.8 4.3 461 127 0.9984
DMDS ND 10.6 6.9 4.2 5.6 −1479 746 0.9972

a y = peak area (counts s−1); x = concentation of DMS or DMDS in nanograms.
b Not detected.

5.0�l DMDS into 10.0 ml methanol. Standard solutions
in methanol containing 100, 10, 1 and 0.1 ng�l−1 were
prepared by serial dilution of the stock solution.

2.3. Soil columns

Columns were 2.6 cm × 30 cm glass tubes filled with
a support matrix of 30 grit (0.35 mm sieve size) washed
quartz sand coated with 2.5 g of soybean oil and packed
to a bulk density of 1.49 g ml−1. Reconstituted water[15]
supplemented with 10 mg l−1 selenite-Se was pumped up-
wardly through the columns at 1.8 ml h−1 throughout the
study. Columns were inoculated with a soil wash[16] and
incubated in the dark at 15◦C for 5 weeks. Gases forming
in the columns were collected in an all glass and stainless
steel effluent line gas trap equipped with a Teflon-lined rub-
ber septum. A syringe equipped with a valve was used to
transfer 0.5 ml of “effluent gas” to the GC inlet.

2.4. Statistical comparisons

Statistical comparisons and linear regression analysis
were made using the Instat computer program (GraphPad
Software).

3. Results and discussion

3.1. PID analysis

The GC system was capable of resolving and detecting
picogram amounts of DMS when the PID was used. This
was demonstrated by injecting a sample containing 100 pg
DMS into a 140◦C isothermal GC. Under the conditions
used for this study, the limit of detection (LOD), using the
three times noise criterion, was about 60 pg (0.55 pmol)
for DMS. The LOD was higher with the DMDS analysis.
No peak was detected when a 100 pg sample of DMDS
was injected into a 220◦C isothermal GC, but a peak of
about 10 times noise was detected when a 500 pg sample of
DMDS was injected. Thus, the minimum amount detectable
would be about 150 pg (0.80 pmol). Detector response
was linear over the range evaluated with both compounds
(Table 1).
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3.2. FID analysis

When the GC system was operated in the isothermal mode
at 140◦C and the FID employed as the detector the LOD
was between 1 and 5 ng of DMS. This was in part due to
the large peak formed by the methanol solvent. DMS ap-
peared as a tangent peak on the tail of the methanol peak
and the methanol tail interfered with the integration of the
DMS peak. This was less of a problem with the PID system
as methanol does not produce a large peak with this detector.
Reducing the temperature of the oven to 110◦C isothermal
reduced the interference caused by the methanol tail but did
not lower the detection limit. With DMDS, the LOD was
between 10 and 100 ng when the GC was operated in the
isothermal mode at 220◦C (data not presented), and, as was
the case with DMS, the tail of the methanol solvent peak in-
terfered with the integration of the peak. Reducing the tem-
perature of the oven to 180◦C isothermal, lowered the de-
tection limit to about 5 ng. Detector response was linear over
the range evaluated with both DMS and DMDS (Table 1).

3.3. Soil column gas analysis

The analysis of DMS and DMDS standards in gas samples
worked well and achieved detection limits that were similar
to those observed with liquid samples containing DMS and
DMDS (data not presented). Based on these results with gas
samples, headspace analysis of samples collected weekly
was used to monitor the formation of DMS and DMDS in
the gaseous effluent of three soil columns over a period of
6 weeks. In the first 3 weeks of operation, no DMS was
detected in the effluents from these columns but in week
4, 3± 1 ml of gas containing 0.68 ng ml−1 DMS (0.338±

Fig. 1. DMS, 470 pg in a 0.5 ml headspace sample, collected in a gas trap
placed in the effluent line from a 4-week-old soil column fed selenite in
the influent buffer.

0.092 ng per 0.5 ml injection) was detected (Fig. 1). In week
5, 3± 0.4 ml of gas containing 0.99 ng ml−1 DMS (0.494±
0.124 ng per 0.5 ml injection) was detected in the “effluent
gas” from the columns. No DMDS was detected.

4. Conclusions

The PID was found to provide a simple and sensitive
method for the determination of DMS and DMDS in both
liquid and headspace samples. With DMS, the PID was
10–50 times more sensitive than FID; with DMDS, PID was
4–20 times more sensitive than FID. Detection limits when
the PID was employed were about 60 pg (0.55 pmol) with
DMS and 150 pg (0.80 pmol) with DMDS. Similar detection
limits were observed when gas samples were injected and
PID proved to be a useful detection method for analyzing
DMS vapors evolving from soil columns.

Acknowledgements

We thank Robin Montenieri and Ryan Vaughn for their ex-
pert technical assistance. Mention of manufacturer or prod-
uct brand name is made for the reader’s convenience and
does not reflect endorsement by the US government. This
paper was the work of US government employees engaged in
their official duties and is therefore exempt from copyright.

References

[1] http://www.epa.gov/ogwdw000/dwh/t-ioc/selenium.html, US Envi-
ronmental Protection Agency, 2002.

[2] C.G. Wilber, Clin. Toxicol. 17 (1990) 171.
[3] R. Zieve, P.J. Ansell, T.W.K. Young, Trans. Br. Mycol. Soc. 84

(1985) 177.
[4] W.T. Frankenberger, U. Karlson, in: W.T. Frankenberger, S. Benson

(Eds.), Selenium in the Environment, Marcel Dekker, New York,
1994, p. 369.

[5] X. Dauchy, M. Potin-Gautier, A. Astruc, M. Astruc, Fresenius J.
Anal. Chem. 348 (1994) 792.

[6] P.M. Huang, R. Fujii, in: D.L. Sparks, A.L. Page, P.A. Helmke,
R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, Ct.T. Johnston,
M.E. Summer, J.M. Bartels, J.M. Bigham (Eds.), Methods of Soil
Analysis. Part 3. Chemical Methods, American Society of Agronomy
and Soil Science Society of America, Madison, WI, 1996, p. 793.

[7] K. Pyrzyñska, Analyst 121 (1996) 77R.
[8] K. Pyrzyñska, Anal. Sci. 14 (1998) 479.
[9] K. Pyrzyñska, Talanta 55 (2001) 657.

[10] A.E. Greenberg, L.S. Clesceri, A.D. Eaton (Eds.), Standard Methods
for the Examination of Water and Wastewater, American Public
Health Association, American Water Works Association and Water
Environmental Federation, Washington, DC, 1992. pp. 3–82.

[11] S. Dilli, I. Sutikno, J. Chromatogr. 300 (1984) 265.
[12] A. Elaseer, G. Nickless, J. Chromatogr. A 664 (1994) 77.
[13] J.L. Gomez-Ariza, J.A. Pozas, I. Giraldez, E. Morales, J. Chromatogr.

A 823 (1998) 259.
[14] W. Goessler, D. Kuehnelt, C. Schlagenhaufen, K. Kalcher, M.

Abegaz, K.J. Irgolic, J. Chromatogr. A 789 (1997) 233.
[15] W.J. Hunter, J. Contam. Hydrol. 53 (2001) 119.
[16] W.J. Hunter, Curr. Microbiol. 45 (2002) 287.

http://www.epa.gov/ogwdw000/dwh/t-ioc/selenium.html

	Determination of dimethylselenide and dimethyldiselenide by gas chromatography-photoionization detection
	Introduction
	Experimental
	Instrumentation
	Materials
	Soil columns
	Statistical comparisons

	Results and discussion
	PID analysis
	FID analysis
	Soil column gas analysis

	Conclusions
	Acknowledgements
	References


	Text6:     This article is a U.S. government work, and is not subject to copyright in the United States.


